Skip to main content
Log in

Sonochemical removal of naphthol blue black azo dye: influence of parameters and effect of mineral ions

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Sonochemical degradation at 278 kHz of naphthol blue black (NBB, a diazo dye widely used in the textile and soap industries) has been investigated. The effects of different parameters and the influence of mineral matrix (bicarbonates ions and phosphates ions) on its sonodegradation have been evaluated. The influence of parameters linked to the pollutant (concentration: 0.50–97.32 μmol L−1), to the technique (power: 20–100 W) and to the natural medium (pH 3–10.8; bicarbonate ions; phosphate ions) has been studied. The decolourisation rate of NBB increases when substrate concentration or ultrasound power increases. Bicarbonate ions at natural medium concentration (2.97 mmol L−1) have a positive influence for low pollutant concentration (0.5–2.0 μmol L−1), due to carbonate radicals. Phosphate ions may also improve the kinetics, but this effect depends on the pH domains. Furthermore, acid pH (pH 3) has a positive effect for high pollutant concentration, whereas basic pH (pH 10.8) has a positive influence at low pollutant concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashokkumar M, Hall R, Mulvaney P, Grieser F (1997) Sonoluminescence from aqueous alcohol and surfactant solutions. J Phys Chem B 101(50):10845–10850

    Article  CAS  Google Scholar 

  • Ashokkumar M, Mulvaney P, Grieser F (1999) The effect of pH on multibubble sonoluminescence from aqueous solutions containing simple organic weak acids and bases. J Am Chem Soc 121(32):7355–7359

    Article  CAS  Google Scholar 

  • Barbour K, Ashokkumar M, Caruso R, Grieser FJ (1999) Sonochemistry and sonoluminescence in aqueous AuCl4-solutions in the presence of surface-active solutes. Phys Chem B 103(43):9231–9236

    Article  CAS  Google Scholar 

  • Chen HY, Zahraa O, Bouchy M (1997) Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. J Photochem Photobiol A Chem 108(1):37–44

    Article  CAS  Google Scholar 

  • Chiha M, Hamdaoui O, Baup S, Gondrexon N (2011) Sonolytic degradation of endocrine disrupting chemical 4-cumylphenol in water. Ultrason Sonochem 18(5):943–950

    Article  CAS  Google Scholar 

  • Cost M, Mills G, Glisson P, Lakin J (1993) Sonochemical degradation of p-nitrophenol in presence of chemical components of natural waters. Chemosphere 27(9):1737–1743

    Article  CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085

    Article  CAS  Google Scholar 

  • Crum LA (1995) Comments on the evolving field of sonochemistry by a cavitation physicist. Ultrason Sonochem 2(2):147–152

    Article  Google Scholar 

  • David B (2009) Sonochemical degradation of PAH in aqueous solution. Part I: monocomponent PAH solution. Ultrason Sonochem 16(2):260–265

    Article  CAS  Google Scholar 

  • Fitzgerald ME, Griffing V, Sullivan J (1956) Chemical effects of ultrasonics—‘‘hot spot” chemistry. J Chem Phys 25(5):926–933

    Article  CAS  Google Scholar 

  • Floger S, Barnes D (1968) Shift in the optimal power input in ultrasonic reaction. Ind Eng Chem Fundam 7(2):222–226

    Article  Google Scholar 

  • Guittonneau S, De Laat J, Doré M, Duguet JP, Bonnel C (1986) Etude de la dégradation des composés organochlorés volatils par photolyse du H2O2 en milieu aqueux. Revue des sciences de l’eau 1:53–54

    Google Scholar 

  • Gültekin I, Ince NH, Nilsun H (2008) Ultrasonic destruction of bisphenol-A: the operating parameters. Ultrason Sonochem 15(4):524–529

    Article  Google Scholar 

  • Guzman-Duque F, Pétrier C, Pulgarin C, Peñuela G, Torres-Palma RA (2011) Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water. Ultrason Sonochem 18(1):440–446

    Article  CAS  Google Scholar 

  • Haugland RP (1996) Handbook of fluorescent process and research chemicals, 6th edn. Spencer ed, Eugene, OR, pp 484–493

    Google Scholar 

  • Henglein A (1987) Sonochemistry: historical developments and modern aspects. Ultrasonics 25(1):6–16

    Article  CAS  Google Scholar 

  • Hoffmann MR, Hua I, Hochemer R (1996) Application of ultrasonic irradiation for the degradation of chemical contaminants in water. Ultrason Sonochem 3(3):163–172

    Article  Google Scholar 

  • Hung H-M, Ling FH, Hoffman MR (2000) Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound. Environ Sci Technol 34(9):1758–1763

    Article  CAS  Google Scholar 

  • Jiang Y, Petrier C, Waite TD (2002a) Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution. Ultrason Sonochem 9(3):163–168

    Article  CAS  Google Scholar 

  • Jiang Y, Petrier C, Waite TD (2002b) Kinetics and mechanisms of ultrasonic degradation of volatile chlorinated aromatics in aqueous solutions. Ultrason Sonochem 9(6):317–323

    Article  CAS  Google Scholar 

  • Jiang Y, Petrier C, Waite TD (2006) Sonolysis of 4-chlorophenol in aqueous solution: effects of substrate concentration, aqueous temperature and ultrasonic frequency. Ultrason Sonochem 13(5):415–422

    Article  CAS  Google Scholar 

  • Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D (2007) Photocatalytic degradation of reactive black 5 in aqueous solutions: effect of operating conditions and coupling with ultrasound irradiation. Water Res 41(10):2236–2246

    Article  CAS  Google Scholar 

  • Latif A, Noor S, Sharif QM, Najeebullah M (2010) Different techniques recently used for the treatment of textile dyes effluents: a review. J Chem Soc Pak 32(1):115–124

    CAS  Google Scholar 

  • Luo J, Hepel M (2001) Photoelectrochemical degradation of naphthol blue black diazo dye on WO3 film electrode. Electrochim Acta 46(19):2913–2922

    Article  CAS  Google Scholar 

  • Maruthamutu P, Neta P (1977) Reactions of phosphates radicals with organic compounds. J Phys Chem 81(17):1622–1625

    Article  Google Scholar 

  • Maruthamutu P, Neta P (1978) Phosphate radicals—spectra, acid-base equilibria, and reactions with inorganic compounds. J Phys Chem 82:710–713

    Article  Google Scholar 

  • Mason TJ, Pétrier C (2004) Advanced oxidation processes for water and wastewater treatment. In: Parson S (ed) Ultrasound processes. IWA Publishing, London, pp 185–208

    Google Scholar 

  • Mason TJ, Lorimer JP, Bates DM (1992) Quantifying sonochemistry: casting some light on a ‘black art’. Ultrasonics 30(1):40–42

    Article  CAS  Google Scholar 

  • Méndez-Arriaga F, Torres-Palma RA, Pétrier C, Esplugas S, Gimenez J, Pulgarin C (2008) Ultrasonic treatment of water contaminated with ibuprofen. Water Res 42(16):4243–4248

    Article  Google Scholar 

  • Merouani S, Hamdaoui O, Saoudi F, Chiha M, Pétrier C (2010) Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase. J Hazard Mater 175(1–3):593–599

    Article  CAS  Google Scholar 

  • Minero C, Pellizzari P, Maurino V, Pelizzetti E, Vione D (2008) Enhancement of dye sonochemical degradation by some inorganic anions present in natural waters. Appl Catal B 77(3–4):308–316

    Article  CAS  Google Scholar 

  • Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 46(8):1173–1181

    Article  CAS  Google Scholar 

  • Özen AS, Aviyente V, Tezcanli-Güyer G, Ince NH (2005) Experimental and modeling approach to decolorization of azo dyes by ultrasound: degradation of the hydrazone tautomer. J Phys Chem A 109(15):3506–3516

    Article  Google Scholar 

  • Pétrier C, Jiang Y, Lamy M-F (1998) Ultrasound and environment: sonochemical destruction of chloroaromatic derivatives. Environ Sci Technol 32(9):1316–1318

    Article  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84

    Article  CAS  Google Scholar 

  • Rosso JA, Rodriguez Nieto FJ, Gonzalez MC, Martire DO (1998) Reactions of phosphate radicals with substituted benzenes. J Photochem A Chem 116(1):21–25

    Article  CAS  Google Scholar 

  • Serpone N, Terzian R, Hidaka H, Pelizetti E (1994) Ultrasonic induced dehalogenation and oxidation of 2-, 3- and 4-CP in air equilibrated aqueous media, similarities with irradiated semiconductor particles. J Phys Chem 98(10):2634–2640

    Article  CAS  Google Scholar 

  • Soares GM, Amorim MT, Hrdina R, Costa-Ferreira M (2002) Studies on the biotransformation of novel disazo dyes by laccase. Process Biochem 37(6):581–587

    Article  CAS  Google Scholar 

  • Stock NL, Peller J, Vinodgopal K, Kamat PV (2000) Combinative sonolysis and photocatalysis for textile dye degradation. Environ Sci Technol 34(9):1747–1750

    Article  CAS  Google Scholar 

  • Stylidi M, Kondarides DI, Verykios XE (2003) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl Catal B Environ 40(4):271–286

    Article  CAS  Google Scholar 

  • Suslick KS (1990) Sonochemistry. Science 247(4949):1439–1445

    Article  CAS  Google Scholar 

  • Tanaka T, Tsuzuki K, Takagi T (2001) Chemical oxidation of organic matter in secondary-treated municipal wastewater by using methods involving ozone, ultraviolet radiation and TiO2 catalyst. Water Sci Technol 43(10):295–302

    CAS  Google Scholar 

  • Torres R, Pétrier C, Combet E, Carrier M, Pulgarin C (2008) Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrason Sonochem 15(4):605–611

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the “Service de Coopération et des Actions Culturelles” of the French Embassy to Cameroon for their financial support, corresponding to the Grant No. SCAC 152/2010-81.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Baup.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalhatou, S., Pétrier, C., Laminsi, S. et al. Sonochemical removal of naphthol blue black azo dye: influence of parameters and effect of mineral ions. Int. J. Environ. Sci. Technol. 12, 35–44 (2015). https://doi.org/10.1007/s13762-013-0432-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0432-8

Keywords

Navigation